HAMPSHIRE FLORA GROUP WORKSHOPS: DEVELOPING IDENTIFICATION SKILLS

MODULE 5: ASTERALES AND CARYOPHYLLALES

This last module in the workshop series is something of a "sweeping up" exercise. In Module 4 we dealt with most of the Asterids but left out the important Order Asterales in order not to overload the content; and in Module 3 we considered one family from the "Other Core Eudicots" order Caryophyllales while leaving two other important families for later. Conveniently, all these groups offer plants flowering on through the summer, making it easier to organise a hands-on workshop late in the season.

Order Asterales: its place in the Asterids

The Asterales is a relatively small order in terms of family numbers: eleven worldwide, with just three in Britain. Of these, only two (Campanulaceae and Asteraceae) have numerous genera, and the latter is by far the larger (in fact, the second largest in terms of species). It is not easy to pin down the age of Campanulaceae because of a lack of fossils, but the family has been through some quite dramatic adaptive radiation, giving rise to many endemics particularly on island chains. The oldest Asteraceae are reckoned to have diverged about 50 million years ago, which is comparatively recent for such a large family, and in evolutionary terms they have been particularly successful in regions that are at least seasonally arid.

Asterales in Britain

The three British family members of the order are:
Campanulaceae
Menyanthaceae

Asteraceae

We shall look at Asteraceae in detail later.

Major traits

ASTERALES	Constant traits	Common traits	Exceptions
	Stipules absent		
	Stamens 5		
	Petals 4-5, fused at least at base		
	Style 1		
		Leaves alternate	Some Asteraceae (see below)
		Flowers bisexual	Pratia; some Asteraceae (see below)
		Inferior ovary	Menyanthaceae
		Stamens borne on corolla-tube	Campanulaceae
		Stamens held in a ring, either appressed or fused, pollen discharging inwards	Menyanthaceae
		Stigma branched or lobed	Downingia
		Ovary 1-celled	Campanulaceae
CAMPANULACEAE	Herbaceous (in Britain)		
		Biennial or perennial	Legousia. Lobelia (some), Downingia
		Milky latex	Legousia, Jasione
		Flowers actinomorphic	Lobelia, Pratia, Downingia

ASTERALES	Constant traits	Common traits	Exceptions
ASTERACEAE	Flowers borne on capitula (receptacles)		
	Sepals absent or modified into a membranous ring, teeth, bristles, awns or hairs		Corollas 3-5-lobed
	Fruit a single-seeded achene	Capitula bearing multiple flowers	Echinops, Olearia Amiculata, Ambrosia
		Anthers fused in ring around style	Xanthium
		Style branched (branches truncate in many genera)	Arctotis, Arctotheca, Calendula

The Asteraceae family

This is the largest family in the dicots, with over 1600 genera and around 25,000 species, not counting microspecies. Even in Britain we have over 100 genera to deal with, and these include many introduced species not always well covered in field guides. Our two largest genera, Hawkweeds Hieracium and Dandelions Taraxacum, have hundreds of described microspecies.

Fortunately it is a highly distinctive family, and many species belong to groupings ('Tribes') that share common features, making it a bit easier to "divide and conquer" when attempting to identify to species. There are two other workshops devoted to the family, one a general conspectus and one dealing solely with the Cichorieae tribe (Dandelion-like species), and we shall not attempt to cover all the ground that they do; but hopefully there will be enough here to give you a feel for the features of the family as a whole and an understanding of how it breaks down to the 16 tribes recognised in the British native and introduced flora.

What distinguishes a Composite?

The most obvious feature that people will recognise is the crowding together of small florets into a single head at the end of a stem. The head is often known as a capitulum, and the stem end (usually thickened) is called the receptacle. Around the outside of the head are a series of bracts, rather like sepals in a simple flower, known as either involucral bracts or phyllaries. The fruits of the individual flowers, which are the lowest part of the corolla, sit directly on the receptacle (or embedded in it) without stalks, and are achenes (single-seeded dry fruits).

This is not the only family that has such an arrangement, other examples in the British flora being the Dipsacaceae (Teasel and Scabious family) - think of the Scabious genera Knautia and Scabiosa. Here we must look at differences in the flower structure. Asteraceae flowers have five stamens, which arise from the sides of the corolla, and the anthers come together to make a tube-like structure encircling the style. Dipsacaceae flowers have four stamens which are free to the base of the flower, and their anthers stand free. Rampions (Phyteuma), in the family Campanulaceae (Bellflowers), have a similar ring of 5 almost fused anthers around the style, but the stamens grow free from the base of the flower and not from the corolla. In other British families with crowded heads of flowers, florets are usually borne on at least a short stalk.

Floral structures

Most Composites bear flowers that are both male and female in the same flowering head, although not all the flowers in that head are necessarily bisexual. A few genera (aliens in Britain) have separate male and female heads on the same plant (are monoecious). Others, such as Petasites (Butterburs), are dioiceous; they have male and female flowers on separate plants.

Tubular floret of Centaurea sp.

Disc floret of Doronicum sp.

Disc floret of Doronicum sp. showing detail of stamens

Composite flowers that are not all-male or sterile have an inferior ovary; that is, the fruiting part is borne below all the other parts of the flower. This sits directly onto or into the receptacle. In some genera, the sculpturing of the little depressions where it sits (the receptacular pits or achene pits) are an important (if sometimes tricky) identification feature.

Receptacle pits of Erigeron karvinskianus

The whole receptacle is surrounded by a series of leafy, membranous or spiny bracts that are at first glance rather like the sepals of a single flower. These are the phyllaries or involucral bracts. The arrangement and nature of involucral bracts may be important in identification: for instance, do they form a single row, two neat rows each of a different length, or are they of varying lengths? Do any of them spread, or are they all appressed? Do they have membranous margins? What colour are they? What sort of hairs do they bear?

The phyllaries of Crepis albida: all similar, not in regular ranks

The 2-ranked phyllaries of Cosmos: an outer ring of linear-lanceolate leafy bracts, an inner of broad membranous bracts

On the receptacle surface, sometimes arising from the base of the floret and often one per floret, there may be receptacular bracts that usually take the form of scales or bristles.

The ovary is surmounted by the actual calyx of the flower, which if present doesn't take the usual form of bract-like or petal-like appendages. Instead it forms a structure known as the pappus. Most people will think of the typical feathery appendage that makes up a dandelion clock or thistledown, but the pappus may be a ring of scales, a horny membranous ring, a number of bristles (possibly barbed or hooked), or absent altogether.

Galinsoga quadriradiata achenes, showing pappus scales (on top) and one receptacular scale (at base)

Composite flowers come in two forms, which according to species (or sometimes variety within species) may occur together in the same head, or one or the other form uniquely in the head.

One form has the corolla as a closed tube (often slender) with 5 (sometimes 4) lobes at its apex, radially symmetrical (actinomorphic). These are known as tubular florets. Where a flowering head has both forms, they occur in the middle of the head and are often referred to as disc florets.

The other form has part of the corolla as a flat strap (the ligule) sitting on top of a tubular part which may be very short (to the point of being hardly visible). These are known as ligulate florets. The tip of the ligule ends in 3 or 5 lobes. Sometimes the strap-shaped portion itself is very short, but the floret can always be recognised as having only mirror symmetry (zygomorphic). Where a flowering head has both forms, these occur round the outside of the head and are referred to as ray florets.

Erigeron karvinskianus, showing both tubular (disc-) and ligulate (ray-) florets

Tubular flowers are most commonly bisexual but sometimes male or sterile. Ligulate flowers are most commonly female or sterile but can be bisexual.

Tube florets of Leucanthemum x superbum, showing exserted styles

Ligulate florets of Erigeron karvinskianus (L), Crepis capillaris (R)

A single style arises from the top of the ovary, and this usually divides at the tip into two branches which may be long and prominent and which bear any stigmas present.

As mentioned, the 5 stamens arise from the sides of the corolla tube; the filaments are free, and the anthers come together to form a ring around the style. Anthers often have tails below, giving them a sagittate (arrowhead-like) shape, and may also have a short appendage on top.

Cutaway of Leucanthemum x superbum disc floret to show stamen filaments free, anthers fused around style

In hermaphrodite flowers the development of the style and anthers follows a characteristic pattern, with variations in some species. The anthers ripen before the stigmas, shedding pollen into the tube that they form together. At this stage the style is still short and the two style branches are pressed together, concealing the receptive stigma surfaces. The style has hairs on its outer surface and as it grows up through the ring of anthers, this carries pollen up into the outside world where visiting pollinators can reach it. The style arms open, revealing the stigmas whose surfaces are then available for pollination from outside. But at the last stage, the arms may then curl backwards to such an extent that the stigmas can collect pollen from their own flower. If the species is self-compatible (and by no means all are), and has not already been cross-fertilised, this is a strategy to ensure seed set in the absence of an external pollinator.

This 'selfing' mechanism should not be confused with apomixis, which is the production of viable seed without any sexual reproduction at all. This occurs in several genera, most notably the Hawkweeds (Hieracium) and Dandelions (Taraxacum) which are almost entirely apomictic in the present era. The result is that genetic mutations are accumulated in small populations without ever being diluted by the normal processes of genetic recombination, giving rise to hundreds of "microspecies". The study of these is one of the most challenging but fascinating pursuits of field botany.

Fruits

The fruits of Composites are often referred to as achenes, in other words a dry, one-seeded fruit that is indehiscent (does not split open). A more precise term which you will sometimes see used is cypsela, which is an achene where the single fruit is in a structure formed from two carpels. The fact that the style bears two stigmas suggests that will be the case, but if you slice across the middle of many Composite fruits you will find thickenings in the internal wall surfaces that make this clear.

Achenes often have sculpturing, particularly of longitudinal ridges or angles, although many thistles and their relatives have more or less smooth achenes. They may also be wrinkled transversely; or muricate (with short, hard projections; in the case of Dandelions they may extend into short conical spines); or tuberculate (with small domed projections). Some are hairy or bristly on their surface. One native genus (the Mayweeds Tripleurospermum) has resin glands on the achene surface.

The achene is sometimes prolonged at the top into a beak; this is part of the achene itself and distinct from the pappus. Dandelions are a classic example, and here the base of the beak is thickened into a cone.

The pappus, if present, represents the calyx of the flower and by fruiting time it may be conspicuous and distinctive. Pappi take many forms. They may be no more than an obscure ridge at the top of the achene; they may make a distinct horny rim; they may be membranous scales; bristles, sometimes barbed; or hairs. The hairs, if they occur, may be simple, rough, bristly, shortly branched or feathery. Different types of pappus elements may occur on the same plant, and the elements may be arranged in one or more ranks.

The main groupings

How the Composites are broken down

With such a huge family of plants, we need a systematic way of breaking them down by morphological and other features. Even in the relatively limited flora of Britain, they occupy almost 120 pages in the terse and somewhat abridged (for Asteraceae) Stace New Flora of the British Isles, and 500 pages in the Sell and Murrell Flora of Great Britain and Ireland. With many garden outcasts and weeds turning up from various parts of the world, it's useful to have a framework to fit them into.

If you are asked to think of typical members of Asteraceae, Thistles, Daisylike plants and Dandelion-like plants will no doubt come to mind first. After a bit of thought, you'll probably add Mugworts and Cudweeds. As it turns out, this isn't too far away from the systematic breakdown into Subfamilies and Tribes that is the conventional way of ordering them.

Three subfamilies are defined for the British flora, and in crude terms they break down like this:

- Carduoideae: anything whose flower heads look vaguely like a Thistle
- Cichorioideae: anything whose flower heads look vaguely like a Dandelion
- Asteroideae: anything whose flower heads look vaguely like a Daisy (and a lot which don't)

Note that Christenhuz et al. (2017) still define three subfamilies, but two of these are tropical and all the above three are lumped into the other. But the breakdown to three is used by Stace, and it's useful for getting your head around the family. Other world conspectuses, for example Byng (2014) and Mabberley (2017), recognise up to 12 subfamilies including these three.

Here is a more formal breakdown of the characters of the subfamilies.

ASTERACEAE	Constant traits	Common traits	Exceptions
CARDUOIDEAE	White latex absent		
	Stem leaves spiral or 0		
	All florets tubular		
	All florets bisexual		
	Filaments joined to back of anthers ('dorsifixed')		
	Each style branch with 1 stigmatic area		
		Leaves spiny	Arctium, Saussurea, Serratula, Rhaponticum, Acroptilon, Centaurea
		Florets pink, red, purple, blue or white	Cirsium oleraceum, Centaurea (some), Carthamus
CICHORIOIDEAE	Stem leaves spiral or 0		
	All florets bisexual		
	Filaments joined to back of anthers ('dorsifixed')		
	Each style branch with 1 stigmatic area		

ASTERACEAE	Constant traits	Common traits	Exceptions
CICHORIOIDEAE (cont.)		White latex present (may be hard to detect)	Tribe Arctotideae
		Leaves not spiny	Scolymus, Sonchus (some)
		Florets yellow to orange on upper face	Cichorium, Catananche, Tragopogon (some), Geropogon, Lactuca (some), Cicerbita, Arctotis
		Florets all ligulate	Tribe Arctotideae
ASTEROIDEAE	White latex absent		
	Filaments joined to base of anthers ('basifixed')		
	Each style branch with 2 stigmatic areas		
		Stem leaves 0 or all spiral	Ambrosia, Euphrosyne, Helianthus, Guizotia, Sigesbeckia, Galinsoga, Bidens, Coreopsis, Cosmos, Dahlia, Eupatorium, Ageratum Bold have all leaves opposite
		Leaves not spiny	Oleaster (some), Xanthium (leaf base, some)
		Inner florets tubular, outer ligulate	Tribe Gnaphalieae, Tanacetum (some), Artemisia, Santolina, Achillea maritima, Oncosiphon, Senecio (some), Delairea, Homogyne, Euphrosyne, Xanthium, Bidens (some), Tribe Eupatoriae

Most members of the family have at least some flowers in the capitulum bisexual (having both stamens and pistil), even if others (for example rayflorets or marginal florets) are female only or sterile. Only Subfamily Asteroideae has members where monoecious (M) flowers (male and female in separate flowers on the same plant) or dioecious (D) flowers (male and female on separate plants) occur exclusively. The table below lists the genera where these occur.

Antennaria	D
Anaphalis	D
Calotis (not always)	M
Baccharis (some female-only capitula)	M
Cotula (dioica)	D
Tussilago	M
Petasites	D
Calendula	M
Ambrosia	M
Euphrosyne	M
Xanthium	M

Anything likely to turn up in the wild in Britain will likely be a member of 15 Tribes of these subfamilies. The bad news is that writers don't always agree on their naming or their boundaries. Here we use the classification given in Stace's New Flora of the British Isles, $4^{\text {th }}$ Edition (with the addition of the Bahieae which gives us one non-native species), as this is what most people will have access to.

A quick tour of the tribes

SUBFAMILY	TRIBE	GENERA
CARDUOIDEAE	CYNAREAE	Echinops, Carlina, Arctium, Saussurea, Carduus, Cirsium, Galactites, Onopordum, Cynara, Silybum, Serratula, Rhaponticum, Centaurea, Carthamus
	A very atypical member of this tribe is the genus Echinops (Globe Thistles). They are often grown in gardens and escape quite frequently. Although the flowers are in globular heads, each head is made up of many capitula, just one flower to each. It is still placed as a Composite because the one- flowered capitula, the flowers and the fruit have all the characteristic features of the family.	CICHORIEAE
CICHORIOIDEAE		

| SUBFAMILY | TRIBE | GENERA | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| ASTEROIDEAE
 (cont.) | ASTEREAE | Grindelia, Calotis, Solidago, Euthamia,
 Aster, Symphyotrichum, Galatella,
 Tripolium, Chrysocoma, Erigeron, Felicia,
 Callistephus, Olearia, Baccharis, Bellis | |
| | Ray-florets, where
 present, come in a wide
 range of colours which
 include purples and
 blues | | |

SUBFAMILY	TRIBE	GENERA
ASTEROIDEAE (cont.)	CALENDULEAE	
A distinctive aroma.		
Found in Britain as		
cultivated for their		
bright colours, and as		
garden outcasts. Only		
the ray florets produce		
achenes, which in		
Calendula are a		
distinctive curved shape.		

SUBFAMILY	TRIBE	GENERA
ASTEROIDEAE (cont.)	COREOPSIDEAE	Bidens, Coreopsis, Cosmos, Dahlia
	Another tribe with all or mostly opposite leaves and few or no ray florets. Apart from Bidens, genera are usually garden escapes or outcasts. The pappus is usually absent or composed of bristles.	
	TAGETEAE	Tagetes
	Represented by one genus, mostly now as impersistent garden outcasts or escapes, with a strong aroma. Involucral bracts are fused to form a lobed sheath.	
	BAHIEAE	Schkuhria
	A former wool alien now very rarely seen. The achenes are highly distinctive.	

SUBFAMILY	TRIBE	GENERA	
ASTEROIDEAE (cont.)	HELENIEAE	Gaillardia, Helenium	
	Garden outcasts that occasionally establish. Flowers are yellow to purplish-brown, and leaves are alternate.	EUPATORIEAE	

Tribal attributes

You will probably be appreciating by now that with such a large and diverse family, there is no simple demarcation to be drawn between its tribes, and often even within its genera. The following table summarises many of the main traits of the family and will give you an idea of whether a feature is found or not in any tribe in this country, and if so, how frequent it is. Hopefully this will help you not to misplace something that is totally unfamiliar and speed up identification.

- found in all genera of the tribe
\square found in many genera of the tribe
- found in few genera of the tribe

												\square			쓸 를 를 포	
Trees or shrubs				-	-	-	-	-								
Perennials	\square		\square			\square	\square									
Biennials	\square	\square	\square				\square	\square		-						
Annuals	-	\square														
Latex present		\square														
Stem leaves absent		\square				\square		\square								
Stem leaves all alternate	\square	\square	\square	-	\square	\square	\square	\square	\square	\square					\square	
Stem leaves all opposite						-				\square	\square	\square				\square
Stem leaves opposite at base										\square	-	-	\square	\square		
Leaves spiny	\square	-														
Leaves pinnately veined	\square	■	\square													
Leaves palmately veined								\square		\square						\square
Leaves simple, unlobed	\square	\square	-	\square	\square	\square	-	\square	\square	\square	\square	-			\square	\square
Leaves lobed	\square	\square	-			-	-	\square		\square		\square	\square	\square	-	\square
Leaves dissected	-	-	\square				\square	\square		-		\square				
Capitula borne singly	\square	\square	\square	-	-	\square	\square	\square	\square	\square		\square	\square			
Capitula in compound inflorescences	\square	\square	-	\square	\square	\square	\square	\square		\square	\square	\square		\square	\square	\square
Receptacle flat or nearly so	\square	-	\square	\square	\square		\square									
Receptacle domed, conical or cylindrical	-	-		-	-	-	\square	-		\square	\square				\square	-
Involucral bracts in one row		-						\square	\square	\square				\square		
Involucral bracts in two rows (outer may be small)		\square	-			\square	-	\square	\square	-	\square	\square			\square	\square
Involucral bracts at >2 heights	\square			-					\square	\square						
Involucral bracts fused into a tube													\square			
Flowers 1 or 2 in a capitulum	-									\square						
Flowers more numerous	\square															
Florets all tubular	\square		-	\square		-	\square	\square		\square		\square		-		\square
Florets all radiate		\square				-						-	-			
Florets in both forms present			\square	-	\square											
Tube-florets white, red, blue or purple	\square		-	-			-	-				-			\square	\square
Tube-florets bright yellow or orange	-		\square	-	\square	\square	\square	\square	\square	-	\square	\square	\square	\square	\square	
Tube-florets otherwise coloured			-	\square		-	-		\square	\square		-	\square		\square	
Ray-florets red, blue or purple		-				\square		\square								
Ray-florets white		\square	-			-	\square	\square			\square	\square				
Ray-florets yellow to orange		\square	\square		\square	\square	-	\square	\square	\square	-	\square	\square	\square	\square	
Ray-florets otherwise coloured			-				-		\square			\square	\square		\square	
Anthers wih long linear basal tails	\square		\square	\square	\square				\square							
Anthers with sagittate basal tails		\square		\square	\square				\square	-					\square	
Anthers with short basal tails		믄	\square				-	-			-					
Anthers without basal tails			\square			\square	\square	\square		\square						
Style arms narrow, linear	\square	믄	\square		\square					\square						
Style arms oblong, truncate or lobed		-	\square	\square		\square										
Pappus 0	-	\square				-	\square	-	\square	\square	\square	-				
Pappus a membranous ring		-					-			-						
Pappus of scales	-	-	\square		-						\square		\square	\square	\square	\square
Pappus of bristles		-				\square				-		\square			\square	
Pappus of hairs	\square	\square		\square	ㅁ	\square		\square				-				\square
Receptacular scales and hairs 0		\square	\square	\square	ㅁ	\square	\square	\square	\square				\square	\square		\square
Receptacle pit toothed / lobed at margin			\square		-	\square								\square	\square	
Receptacular hairs or bristles	\square	-	\square												\square	
Receptacular scales	\square	\square		-			\square			\square	\square	\square				

Key to groups of similar genera

"Thistles"
Here we include all spiny plants with tubular florets only
1a. Flowers occurring each in its own capitulum Echinops (Globe Thistles)
1b. More than one flower in each capitulum 2
2a. Spines only on involucral bracts, at least some with a hooked tip Arctium (Burdocks)
2b. Spines elsewhere, or if only on involucral bracts then not hooked at tip 3
3a. Corolla yellow or orange 4
3b. Corolla blue, purple, mauve, pink or white 7
4a. Pappus of feathery hairs (Cirsium) Cirsium
4b. Pappus otherwise or non-existent 5
5a. Capitula not surrounded by leaves or large outer involucral bracts; involucral bracts with a distinct membranous appendage; spines confined to involucral bracts.

\qquad
Centaurea (Star-thistles)
5 b . Capitula surrounded by leaves or large outer involucral bracts; prominent spines on involucral bracts, edges to leaves with small or weak spines6
6a. Pappus of two rows of rigid hairs; flowers yellow Cnicus (Blessed Thistle)A rare casual
6b. Pappus absent; flowers deep orange

\qquad
Carthamus tinctorius (Safflower)
A rare casual
7a. Pappus hairs feathery 8
7b. Pappus hairs not feathery 10
8a. Innermost involucral bracts with a spine abruptly delimited from the base; often clusters of spines at leaf base and midrib Cynara (Cardoon) A rare garden escape
8b. Involucral bracts, if spiny, then gradually narrowed into spine 9
9a. Outer involucral bracts leaf-like; inner membranous, pale yellow within and resembling ligulate flowers; flowers "everlasting" Carlina (Carline Thistles)
9 b . All involucral bracts linear-lanceolate to ovate Cirsium (Thistles)
10a. Leaves with sharp spines 11
10b. Leaves without spines 13
11a. Receptacle glabrous, although achene pits fringed with teeth .Onopordum (Scotch Thistles)11b. Receptacle densely hairy or bristly12
12a. Stem leaves running down the stem in a spiny wing; involucral bracts untoothed but with a terminal spine Carduus (Thistles)
12b. Leaves variegated; stem leaves not running down the spine, stems not spiny; outer involucral bracts with spine-tipped lobes Silybum (Milk Thistle)
13a. Flowers always hermaphrodite and of the same size; tip of involucral bract membranous but not separated from the rest by a constriction .Acroptilon (Russian Knapweed)
A very rare alien
13b. Outer flowers male-sterile and sometimes enlarged; tip of involucral bract membranous, separatedfrom the base by a constriction and often toothed or spinyCentaurea (Knapweeds)

If you are trying to decide between a Cirsium and a Carduus, then a couple of shortcuts are:

- Cirsium pappus hairs are feathery; Carduus are simple.
- If the leaves aren't decurrent into a spiny wing then it's definitely a Cirsium; if they are, then it could be either.

Many thistles produce white colour variations, none more so than the Marsh Thistle Cirsium palustre.

Yellow-flowered "dandelions"

This is probably the Composite group that gives beginners most problems in even getting down to the right genus; in general, until you are familiar with the general recognition features of certain plants, you will need good fruiting material. The key below covers all plants with only yellow ligulate flowers, including introductions.

1a. Pappus of scales or a raised rim, or absent.. 2
1b. At least the central flowers with a pappus of hairs.. 6
2a. Thistle-like plant with spiny leaves ..Scolymus (Golden-thistle)
Very rare casual
2b. Plant not thistle-like, leaves not spiny .. 3
3a. Pappus of scales... Hedypnois (Scaly Hawkbit)
A rare casual
3b. Pappus a raised rim, or absent.. 4
4a. Leaves all basal; stalks much swollen below the capitulumArnoseris (Lamb's Succory)
A probably extinct native
4b. Stem leaves present; stalks not much swollen below the capitulum... 5
5a. Capitula $10-30 \mathrm{~mm}$ in diameter; outer involucral bracts not enclosing achenes, not spreading in fruit
.Lapsana (Nipplewort)
5b. Capitula $4-5 \mathrm{~mm}$ in diameter; outer involucral bracts enfolding achenes, spreading like a star in
fruit..Rhagadiolus (Star Hawkbit)
A very rare casual
6a. Pappus on at least some achenes feathery .. 7
6b. Pappus on all achenes simple, and smooth or finely toothed.. 13
7a. Stem leaves absent; scale-like bracts may be present on stem .. 8
7b. Obvious stem leaves present... 10
8a. Membranous receptacular scales present .. Hypochaeris (Cat's-ears)
8b. No receptacular scales .. 9
9a. Stems often branched, with scale-like bracts; hairs on stem and leaves unforked; often more than one capitulum on stem
.Scorzoneroides (Autumn Hawkbit)
9b. Stems unbranched, without bracts; hairs on stem and on leaves (if present) forked at tip; capitula solitary on stem.

Leontodon (other Hawkbits)
10a. Abundantly hairy, with at least some of the hairs anchor-shaped (glochidiate); leaves toothed or lobed 11
10b. Glabrous, or if hairy then no hairs anchor-shaped; leaves long, narrow, untoothed 12
11a. Outer and inner involucral bracts all similar, lanceolate Picris (Hawkweed Ox-tongue)
11b. Outer involucral bracts broadly ovate, much broader than inner, cordate at base
Helminthotheca (Bristly Ox-tongue)
12a. Involucral bracts always more than 10 and in several rows Scorzonera (Viper's Grasses)
12b. Involucral bracts usually less than 10 and in one row Tragopogon (Goat's-beards)
13a. Achenes distinctly flattened 14
13b. Achenes not flattened, or slightly flattened. 16
14a. Achenes with a distinct narrow beak or at least markedly narrowed at the top 15
14b. Achenes without a beak and not, or scarcely, narrowing at the top Sonchus (Sow-thistles)
15a. Involucral bracts in several rows of varying length; pappus hairs in 2 rows of equal length
15b. Involucral bracts in two unequal rows, outer conspicuously shorter than inner; pappus hairs in 2rows of unequal lengthMycelis (Wall Lettuce)
16a. Stems without leaves or scales or stolons, smooth and conspicuously hollow; capitulum always 1 per stem

\qquad
Taraxacum (Dandelions)
16b. Stems with leaves or scales, or else with srolons; capitula often more than 1 per stem 17
17a. Inner achenes with pappus of rigid hairs swollen and minutely bristly at base TolpisA rare casual
17b. Pappus all of soft hairs not swollen at base 18
18a. Receptacle with long silky hairs at least as long as the flowers arising from the margins of the achene-pits Andryala A very rare, perhaps vanishing, casual
18b. Receptacle without hairs, or hairs short 19
19a. Pappus hairs pure white 20
19b. Pappus hairs yellowish to pale brown 21
20a. Plant with long thin rhizomes and whitish tubers; capitulum never more than 1 per stem;involucral bracts in several rows.Aetheorhiza (Tuberous Hawk's-beard)
A rare but persistent garden weed
20b. Plant without rhizomes; usually more than 1 capitulum per stem; involucral bracts in 2 rows, theouter shorter than the innerCrepis (Hawk's-beards)
21a. Involucral bracts in two rows, the outer shorter than the inner; achenes narrowed or beaked at top
Crepis (Hawk's-beards)
21b. Involucral bracts in several rows; achenes widening towards a truncate top 22
22a. Plant usually with stolons; leaves always without a distinct stalk; ligules often with a reddish stripe on the underside; achenes less than 2.5 mm long, ribbed and each rib projecting separately shortly above the top; pappus hairs mainly in 1 row with a few shorter ones
22b. Plant never with stolons; leaves usually distinctly stalked at least towards base; ligules yellow, rarely with greenish colouring; achenes $2.5-5.0 \mathrm{~mm}$, ribs coming together at the top into an obscure rim; pappus hairs in two rows \qquad Hieracium (Hawkweeds)

Yellow and white "daisies"

This key covers all Composites with yellow disc florets and white ray florets, some of which are quite un-Daisylike.
1a. At least basal leaves opposite. 2
1b. All leaves alternate 4
2a. Leaf-lobes linear to thread-like ...Cosmos (Mexican Aster) A showy-flowered garden escape with broad ray-florets, more usually pink
2b. Leaf-lobes lanceolate to ovate 3
3a. Capitula less than 7 mm in diameter excluding ligules; pappus of scales
Galinsoga (Gallant Soldiers)
3b. Capitula more than 7 mm in diameter excluding ligules; pappus of strong barbed bristles Bidens (Spanish Needles)
4a. At least the central flowers with a pappus of hairs 5
4b. Pappus a membranous rim, scales, bristles or absent 10
5a. Outer involucral bracts broader than inner and leafy

\qquad
Callistephus (Chinese Aster) Garden escape, usually grown as a double or semi-double and in many ligule colours including white
5 b. Outer involucral bracts similar to or smaller than inner 6
6a. At least the larger leaves truncate to cordate at base7
6b. Leaves all wedge-shaped at base 9
7a. Involucral bracts in a series of rows, innermost longest

\qquad
Symphyotrichum (Blue Wood Aster)7 b . Involucral bracts in 1 main row, sometimes with smaller basal ones8
8a. Leaves pinnately veined; involucral bracts in one main row, with small ones at base of capitulum Rarely naturalised, mainly in the extre... North
8 b. Leaves palmately veined; capitula without small basal involucral bracts

\qquad
Pericallis (Cineraria)A popular but frost-sensitive pot plant, naturalised in SW
9a. Involucral bracts uniformly green, or greener at tip than at base Symphyotrichum (Michaelmas Daisy)
9b. Involucral bracts greener at base than tip. Erigeron (Fleabanes)
10a. Receptacular scales or bristles present 11
10b. Receptacular scales and bristles absent (sometimes short fringe of hairs round achene pit) 12
11a. Corolla of disc florets with a small pouch at base, hiding the top of the ovary from one direction
Chamaemelum (Chamomiles)
11b. Corolla of disc florets without a pouch, not hiding the top of the ovaryAnthemis (Corn Chamomiles)
12a. Pappus of 1-8 barbed persistent bristles and minute incurved scales ... Calotis (Purple Bur-daisy) Very rare casual
12b. Pappus a minute rim or absent. 13
13a. Robust garden perennials; leaves deeply pinnately divided; receptacle conical; pappus entirely absent. .Chrysanthemum (garden Chrysanthemums)
13b. Not as above 14
14a. Rosette plant; capitula solitary on leafless stems Bellis (Daisies)
14b. Flowering stems with leaves 15
15a. Stem leaves shallowly to deeply toothed or lobed but not divided to midrib, the teeth simple 16
15b. Stem leaves pinnately lobed or divided to midrib or nearly so, the lobes also divided 18
16a. Ligules less than 10 mm long Tanacetum (Tansies)
17a. Tubular part of ligulate flower not winged; coming into flower late (September onwards)A fairly frequent garden escape
17b. Tubular part of ligulate flower with 2 narrow transparent rings Leucanthemum (Ox-eye Daisies)
18a. Terminal leaf segments lanceolate to ovate, flat
\qquadTanacetum (Tansies)18b. Terminal leaf segments linear or thread-like, not flattened or hardly so19
19a. Achenes with 4-5 ribs, without resin glands; scented especially when fresh
...Matricaria (Scented Mayweeds)19b. Achenes with 2 strong ribs on the inner face and two resin glands near the top on the outer face;unscented or slightly scentedTripleurospermum (Scentless Mayweeds)

The groups that are likely to present most problems here are the Mayweeds and Chamomiles, with finely divided leaves and medium-sized flowers; and the Ox-eye Daisies, with lobed or toothed leaves and large flowers.

Here are some hints for the Mayweeds and Chamomiles:

- Chamaemelum and Anthemis have receptacular scales; Matricaria and Tripleurospermum don't
- Matricaria has a hollow receptacle; the others don't
- Only Chamaemelum has a "baggy" extension to its tubular florets
- Anthemis leaves tend to have a degree of regularity to the way their pinnate divisions are held, which is a useful "jizz" character
- The achenes of Chamaemelum are very faintly ribbed on the inner face only; Tripleurospermum achenes are also ribbed on the inner face only, but bear resin glands on the outer face.

Recent name changes in Asteraceae

Recent molecular and evolutionary work on the Asteraceae has taken its toll of traditional genus names, as in other families. Clive Stace has been fairly conservative in adopting new names, and in some respects we are now just catching up with other parts of the world in realigning our classification. Below is a guide to what has changed between the first edition of Stace (1991) and the fourth (2019). At the generic level the pace of change is likely to slow down considerably now, so it is a good time to get your head around these changes.

Continued...
Aster

Order Caryophyllales: its place in the other core eudicots

EUDICOT OVERVIEW

The "other core eudicots" are a bit of a mixed bag whose present members started to diverge from the common ancestral line with the Asterids quite early. As we saw in Module 3, there are only three orders in the grouping, one of which (Berberidopsales) does not occur in Britain, and one of which (Santalales) has just two species here.

That leaves the Caryophyllales, a much larger order of roughly 12,000 species worldwide. Defining families through ancestry relationships is challenging in
this order, and the current arrangement of families is a bit of a compromise between new evidence and botanical tradition. Typical (though not universal) traits of the order are: attachment of the ovules (placentation) within the ovary to a central free-standing column (free-central) or pedestal (free-basal); presence of betalain pigments, particularly prominent in families such as the Amaranthaceae (think beetroot or purple amaranth!) but absent from Caryophyllaceae, whose colouring (where it occurs) comes from anthocyanins; and a large proportion of stress-tolerant plants. The last include species tolerant of salt, drought (especially through succulence), low levels of nutrients, especially nitrogen (often carnivorous) and high levels of nitrogen (for instance, in many members of the Amaranthaceae). For an overview of the whole order, refer to the Module 3 workshop notes.

Distinguishing features of Amaranthaceae and Polygonaceae

These families fall into different subsections of the order but have many morphological similarities. They can usually be distinguished with a little attention to detail.

Feature	Amaranthaceae	Polygonaceae
Succulence	Occurs in some family members	Does not occur
Stipules	Absent	Stipules fused as sheaths around stems, sometimes rather short and inconspicuous (ochreae)
Perianth	Always of 1 whorl of 1-5 tepals, or absent	Tepals often in 2 whorls, mostly 5 or 6, rarely 3 or 4
Stamens	$1-5$	$6-9$, most commonly 6 or 8, rarely fewer

Docks and Knotweeds: Polygonaceae

Worldwide this is not a very large family, with about 1200 species of which we have roughly 9% recorded as native or naturalised. The most distinctive feature of the subfamily Polygonoideae, to which all our plants belong, is the tubular ochrea formed of fused stipules sheathing the stem; in some taxa this is very short and needs to be looked for carefully.

Genus reassignments in the family

There have been some genus splits in the family through successive British works of reference, mostly as a result of better molecular knowledge. Most of these are reasonably straightforward but Sell \& Murrell (2018) has complicated matters by treating what many authors would currently consider subgenera as separate genera, following older traditions; likewise with Rumex. The diagram below illustrates the changes.

Koenigia was augmented by Stace (2019) by joining the original single native species with a number of very different-looking non-native species previously in Persicaria. Sell \& Murrell (2018) reserve Koenigia for the native one and assign the rest of these to a genus Aconogon, which Stace maintains cannot be justified on molecular evidence.

Most of the non-native (and invasive) perennials that Stace formerly placed in Fallopia are now split to Reynoutria. This has been established practice elsewhere for some time.

For the rest of this section we shall follow the Stace 4 genus names, with the addition of Oxygonum and Emex which are not covered by Stace.

'Akeroyd' refers to edition 2 of BSBI Handbook 3, Docks and Knotweeds of Britain and Ireland.

Family traits

Constant traits	Common traits	Exceptions
Stipules fused to form sheaths at nodes (ochreae)		
Leaves alternate or subopposite		
Leaves simple		
Ovary superior		
Flowers actinomorphic (radial symmetry)		
Flower colours muted tones of green, brown, pink or white		
Ovary one-celled, with one ovule		
Fruit an achene		
	Leaves entire (but may be wavy)	Oxygonum, Rumex (some)
	Leaves pinnately veined	Fagopyrum, Rheum, Oxyria
	Flowers in racemes, simple or branched, or panicles	Persicaria (some), Koenigia (1 sp.), Polygonum
	Perianth segments 4 or 5	Koenigia islandica (3), Rheum, Rumex, Emex (6)
	Fruits trigonous (sometimes weakly so)	Persicaria (some), Oxygonum, Oxyria

A key to genera

1 Small annual; leaves subopposite; tepals 3; rare montane plant Koenigia
1' Annual or perennial; leaves alternate; tepals usu. >3 2
2 Perennial herb; leaves kidney-shaped; montane Oxyria
2' Leaves not kidney-shaped 3
3 Leaves palmately veined 4
3' Leaves pinnately veined 5
4 Leaves $\geq 40 \mathrm{~cm}$, \pm palmately lobed; tepals, in 2 whorls; stamens 9 Rheum
4' Leaves $<15 \mathrm{~cm}$, hastate, sagittate or unlobed; tepals <6; stamens 8 Fagopyrum
5 Three outer tepals joined, with stiff spreading spiny hairs 6
5' Tepals without spiny hairs. 7
6 Spines on the margins of the tepals .Oxygonum
6' Spines terminal on tepal Emex
7 Outer tepals small; inner tepals enlarged, enfolding the achene and often with a tubercle when fruiting; all or most flowers bisexual Rumex subgenus Rumex
7' All tepals without tubercles; flowers dioecious, or effectively so (i.e. one or other sex abortive on a plant) 8
8 Tepals 6, with no or vestigial tubercles at fruiting; plant fully dioecious
Rumex subgenus Acetosa
8' Tepals 5, lacking tubercles; plant functionally dioecious 9
9 Stigmas finely divided (20x loupe); flowers effectively dioecious (one or other sex aborted on a plant) 10
9' Stigmas small, capitate or club-shaped; flowers fully bisexual 11
10 Sprawling or climbing plant, woody at base; leaves $<2 \mathrm{~cm}$, rounded at base
.Muehlenbeckia
10’ Plant with erect hollow herbaceous stems dying back in winter; leaves $>2 \mathrm{~cm}$, truncate or cordate at base .Reynoutria
11 Stems may twine; 3 outer tepals strongly keeled or winged Fallopia
11' Stems never twine; 3 outer tepals at most feebly keeled 12
12 Flowers all in axillary clusters of 6 or fewer flowers12' Inflorescences mostly >6-flowered, at least some terminal13
13 At least some anthers exserted from tepals or partially so; basal leaves present at flowering time Bistorta
13' Anthers occasionally exserted from tepals or partially so; basal leaves absent at flowering time Persicaria
13" Anthers not exceeding tepals; basal leaves absent at flowering 14
14 Flowers in branched panicles Koenigia
14' Flowers in tight heads, cylindrical or tapering unbranched inflorescences Persicaria

Some illustrative features of the genera

Persicaria maculosa Gray

Annuals or perennials
Ochreae tubular, truncate, ciliate: variable in shape and hairiness in genus

Tepals 4(-5) (A): constant for genus Anthers not exserted (A, B): characteristic for genus
Style branches 2 (C): 1-3 in genus
Stigmas capitate (C): capitate or clavate in genus

Achene trigonous (D): trigonous or discoid in genus

Koenigia islandica (All.)

T.M. Schust. \& Reveal
(Koenigia subgenus
Koenigia)
Leaves subopposite (C)
Ochreae with triangular lobes (C): tubular, long-acuminate or lobed in genus
Tepals 3 (D, F): 5 in rest of genus Stamens 3 (D): 3 or 8 in genus Styles 2 (E, F): 3 in rest of genus
Stigmas capitate (E,F)
Achene bluntly trigonous (G): bluntly trigonous to triquetrous and somewhat keeled in genus

Koenigia campanulata

(Hook. F.) T.M. Schust. \& Reveal
(Koenigia subgenus
Aconogonon)
Leaves alternate (A): typical for genus
Ochreae lobed (A)
Tepals 5 (B,C): typical for genus; fused exceptionally far for this genus Stamens 8 (C): typical for genus Styles 3(D): typical for genus
Stigmas capitate (D)
Achene triquetrous, keeled (E): bluntly trigonous to triquetrous and somewhat keeled in genus

Bistorta amplexicaulis (D.

Don) Greene
Large prominent ochreae (A): typical for genus
Inflorescence a spike-like composite of few-flowered cymes (A): typical for genus
Tepals 5 (B, C): constant for genus
Stamens 8 (B, C): constant for genus Styles 3 (D): constant for genus Stigmas minute, capitate: typical for genus
Achene trigonous (D): constant for genus

Oxygonum alatum Burch.

Annual herb: annual and perennial herbs in genus

Leaf outlines very variable in many species
Inflorescences long racemes of clusters of 1-5(-15) flowers
Flowers monoecious and bisexual together
Tepals 5 (1): characteristic for genus Stamens 8 (1): constant for genus Styles 3 (1): 2 or 3 in genus
Achenes trigonous with spines at apex (2): characteristic for genus

Fagopyrum cymosum

(Trevir.) Meisn.
Palmately veined leaves (A): constant for this genus
Ochreae truncate or oblique (A, B): typical for genus
Tepals 5 (C,D): constant for genus Stamens 8 (C,D) : constant for genus Styles 3 (E): constant for genus
Stigmas small, capitate (E): constant for genus
Achene trigonous (F): constant for genus

Polygonum maritimum L.

Perennial herb, woody below: annuals and perennials in genus Ochreae sheathing, silvery / brown, tubular, laciniate (C): characteristic for genus

Inflorescence a 1-6 flowered axillary clusters (B): constant for genus
Tepals 5 (D): constant for genus Stamens 6-8 (D): 5-8 for genus Styles 3 (despite E,F): constant for genus
Stigmas capitate, small: constant for genus
Achenes weakly trigonous (F): constant for genus

Fallopia baldschuanica (Regel) Holub

Clockwise twining habit(A): typical for genus
Ochreae sheathing only at base: typical for genus
Tepals 5 (C): constant for genus Stamens 8 (C): constant for genus Styles 3; constant for genus, but in this case small and non-obvious (C) Stigmas capitate (C): constant for genus
Outer tepals enlarging to enclose fruit, winged or keeled (E): constant for genus
Achene trigonous (F): constant for genus

Muehlenbeckia complexa

(A. Cunn.) Meisn.

Perennials, often woody
Ochreae short and tubular (D): characteristic for genus Dioecious (E,F): bisexual, monoecious or dioecious in genus Tepals 5 (E, F): constant for genus Stamens 8 (F): 8-9 in genus Styles 3 (E): constant for genus Stigmas fimbriate (E): constant for genus
Tepals persistent and semisucculent, more or less enclosing achene (G): constant for genus Achene trigonous (H): globular to triquetrous in genus

Reynoutria sachalinensis (F. Schmidt) Nakai

Herbaceous non-climbing perennials Ochreae short ($\leq 3 \mathrm{~mm}$), cylindrical (A): constant for this genus

Tepals 5 (C,D): constant for this genus
Stamens 8 (D): constant for this genus
Styles 3 (E): constant for this genus Stigmas divided, fimbriate (E): constant for this genus
Tepals enclosing fruit, winged and keeled (G) to greater or lesser degrees: constant for this genus Achenes trigonous (E): constant for this genus

Rheum palmatum L .

Perennial herbs
Ochreae large and sheathing: constant for genus

Tepals 6 (A): constant for genus Stamens 9: characteristic for genus
Styles 3: constant for genus
Stigmas capitate, papillose: constant for genus
Fruit an achene, 3-angled with broad membranous wings (B): constant for genus

Rumex acetosella L .

(Rumex subgenus Acetosa)

Perennial herbs

Dioecious: constant for genus
Leaves hastate (A): variously lobed in subgenus
Ochreae conspicuous, fimbriate (B):
fimbriate, bifid or fringed in subgenus
Inflorescences terminal or axillary panicles of whorled clusters: characteristic for subgenus Tepals 6 (C), scarcely enlarging in fruit and unwinged (D): typically enlarging and winged in subgenus Tepals without tubercles (D): characteristic for subgenus
Stamens 6, occasionally more: constant for genus

Styles 3, divided: constant for genus Achenes trigonous (D): various in subgenus

Rumex conglomeratus

Murray (Rumex subgenus

Rumex)

Perennial herb: annual to perennials in subgenus
Flowers bisexual: constant in subgenus

Leaves \pm lanceolate: leaves never hastate or sagittate in subgenus Inflorescences in whorls on branched panicles (A): panicles branched or rarely simple in subgenus
Tepals 6: constant for subgenus Stamens 6: stamens (1-)6(-9) in subgenus
Stigmas 3, feathery: constant in subgenus

Inner tepals enlarging in fruit, usu. all with tubercules (C,D): 0-3 tubercules in subgenus

Achenes acutely trigonous: trigonous in subgenus

Oxyria digyna (L.) Hill

Single-species genus
Dioecious perennial
Leaves kidney-shaped, mostly at base

Tepals 4 (A)
Stamens 6 but some often reduced (A)

Styles 2 (B)
Stigmas red, feathery (B)
Achenes biconvex (D), fringed with a broad membranous wing (C)

Emex spinosa (L.) Campd.
This genus is now being subsumed into Rumex, despite significant morphological differences
Monoecious annuals
Leaves rounded or cordate at base
Ochreae membranous (A), quickly becoming tattered
Inflorescence of terminal (male) and axillary (female) clusters of flowers Tepals 6, fused at base in female flowers
Stamens 4-6 (B)
Styles 3, very short
Stigmas feathery
Tepals at fruiting spiny, with spreading tips (C)

Achenes ovoid or somewhat trigonous

Synoptic illustrations of fruits

Persicaria fruits and achenes

A, B: P. lapathifolia - C: P. maculosa - D: P. minor - F: P. hydropiper

Fruits of Rumex: Sheet 1

Fruits of Rumex: Sheet 2

Goosefoots and their relatives: Amaranthaceae

This section will be added in a later issue. Meanwhile, there is a fuller guide to the family produced for an earlier dedicated workshop on the Hants Plants web site:
(https://hantsplants.uk/assets/documents/guides/Amaranthaceae\ Wor kshop\%20Notes.pdf)

This now needs updating for current ideas on taxonomy but should still be useful. Like many of the workshop notes for individual families, it includes keys down to species level.

References and further reading

Akeroyd, J.R. (2014): Docks and Knotweeds of Britain and Ireland, edn. 2, BSBI Handbook 3, Botanical Society of Britain and Ireland, London.

Byng, J.W. (2014): The Flowering Plants Handbook, Plant Gateway, Hertford.
Christenhuz, M.J.M, Fay, M.F., \& Chase, M.W. (2017): Plants of the World, Kew Publishing, London.

Mabberley, D.J. (2017): Mabberley's Plant Book, edn. 4, Cambridge University Press, Cambridge.

Sell, P.D. \& Murrell, G. (2018): Flora of Great Britain and Ireland, vol. 1, Cambridge University Press, Cambridge.

Sell, P.D. \& Murrell, G. (2006): Flora of Great Britain and Ireland, vol. 4, Cambridge University Press, Cambridge.

Stace, C. (2019): New Flora of the British Isles, edn. 4, Cambridge University Press, Cambridge.

Acknowledgements for illustrations

p. 2: Crepis albida, photo Martin Rand
p. 6: Flowers from Asteroideae, Cichorioideae and Carduoideae, photo Tony Wills; CC BY-SA $3.0<\underline{h t t p s: / / c r e a t i v e c o m m o n s . o r g / l i c e n s e s / b y-s a / 3.0>, ~ v i a ~}$ Wikimedia Commons
p. 7: adapted from Hickey \& King, Common Families of Flowering Plants
pp. 8-13: photos Martin Rand
p. 15: excerpted from Hickey and King, The Cambridge Illustrated Glossary of Botanical Terms
p. 16: photos Martin Rand
p. 20: Echinops, photo Martin Rand

Scolymus hispanicus, photo Júlio Reis; CC BY-SA 3.0
https://creativecommons.org/licenses/by-sa/3.0, via Wikimedia
Commons
p. 21: Arctotheca license GNU Free Documentation License, via Wikimedia Commons
Omalotheca hoppeana, Inula conyzae, photos Martin Rand
p. 22: Aster alpinus, Tripleurospermum maritimum, Senecio cambrensis, photo Martin Rand
p. 23: Osteospermum, Helianthemum, Galinsoga, photos Martin Rand
p.24: Bidens cernua, photo Martin Rand

Tagetes; public domain, via Wikimedia Commons
Schkuhria, photo Patrick Alexander; CC0, via Wikimedia Commons
p. 25: Helenium, Ageratum, photos Martin Rand
p. 40: Persicaria maculosa from Butcher, A New Illustrated British Flora, vol. 1 Koenigia islandica from Ross-Craig, Drawings of British Plants, fasc. XXVI
p. 41: Persicaria campanulata, Bistorta amplexicaulis from Clement, Smith and Thirlwell, Illustrations of Alien Plants of the British Isles
p.42: Oxygonum alatum from Hooker, Icones Plantarum vol. 14

Fagopyrum суmosum from Clement, Smith and Thirlwell, Illustrations of Alien Plants of the British Isles
p. 43: Polygonum maritimum from Akeroyd, Docks and Knotweeds of Britain and Ireland
Fallopia baldschuanica from Clement, Smith and Thirlwell, Illustrations of Alien Plants of the British Isles
p. 44: Muehlenbeckia complexa, Reynoutria sachalinensis from Clement, Smith and Thirlwell, Illustrations of Alien Plants of the British Isles
p. 45: Rheum palmatum, Rumex acetosella from Akeroyd, Docks and Knotweeds of Britain and Ireland
p. 46: Rumex conglomeratus, Oxyria digyna from Akeroyd, Docks and Knotweeds of Britain and Ireland
p. 47: Emex spinosa from Akeroyd, Docks and Knotweeds of Britain and Ireland Persicaria fruits adapted from Jonsell ed., Flora Nordica vol. 1
pp. 48-49: Rumex fruits from Sell \& Murrell, Flora of Great Britain and Ireland, vol. 1

